A PAGE FROM NEWTON'S NOTEBOOKS

[Background. Isaac Newton's notebooks have been digitized, and are available through Cambridge University. Among them is one labeled Add. 3960. As the notes on the site
https://cudl.lib.cam.ac.uk/view/MS-ADD-03960/1
mention, "Many items in Add. 3960 relate to Newton's planning, drafts, publication, and revision of Tractatus de quadratura curvarum, a treatise devoted to what we would now call integration, which Newton composed in the early 1690s, reworked in the early 1700 s, and eventually published as an appendix to the Opticks (1704)." This example is part of Problem 9 (p. 405): "To determine the area of various given curves." He uses the notation from Problem 8; there he has sketched some graphs $r=f(x)$ over an interval $A B$, where the graph leads from (A, F) to (B, D), so the corresponding area $z=\int_{0}^{x} f(t) d t$ is that of the curvilinear polyhedron $A F D B$; the letter H refers to a value larger than B.

In this example he is calculating areas by anti-differentiation, using his $\mathrm{Bi}-$ nomial Theorem to reduce integrals involving radicals to the term-by-term integration of power series.]

Example: 4. Where a previous reduction by extraction of roots is required.

Given $r=\sqrt{a a+x x}$ (the equation of a hyperbola), extracting the root by an infinite sequence yields

$$
r=a+\frac{x x}{2 a}-\frac{x^{4}}{8 a^{3}}+\frac{x^{6}}{16 a^{5}}-\frac{5 x^{8}}{112 a^{7}} \quad \& c
$$

[This curve is the graph of $r=\sqrt{a^{2}+x^{2}}$. Newton writes the root as $a \sqrt{1+\left(\frac{x}{a}\right)^{2}}$, and uses his binomial theorem

$$
\begin{equation*}
(1+t)^{\frac{1}{2}}=1+\frac{1}{2} t-\frac{1}{8} t^{2}+\frac{1}{16} t^{3}-\frac{5}{128} t^{4}+\ldots \tag{*}
\end{equation*}
$$

We substitute $t=\left(\frac{x}{a}\right)^{2}$ and multiply by a :

$$
r=a+\frac{1}{2}\left(\frac{x^{2}}{a}\right)-\frac{1}{8}\left(\frac{x^{4}}{a^{3}}\right)+\frac{1}{16}\left(\frac{x^{6}}{a^{5}}\right)-\frac{5}{128}\left(\frac{x^{8}}{a^{7}}\right)+\ldots .
$$

Newton has a numerical error in the last denominator.]
Proceeding as before,

$$
z=a x+\frac{x^{3}}{6 a}-\frac{x^{5}}{40 a^{3}}+\frac{x^{7}}{112 a^{5}}-\frac{5 x^{9}}{1008 a^{7}} \quad \& c
$$

[Newton integrates the series term by term. The last term listed should have 1152 instead of 1008.]

In the same way if given $r=\sqrt{a a-x x}$ (the equation of a circle), we obtain

$$
z=a x-\frac{x^{3}}{6 a}-\frac{x^{5}}{40 a^{3}}-\frac{x^{7}}{112 a^{5}}-\frac{5 x^{9}}{1008 a^{7}} \& c .
$$

[Again, the last term listed should have 1152 instead of 1008.]
Again if given $r=\sqrt{x-x x}$ (the equation of a circle) we obtain from extraction of the root

$$
r=x^{\frac{1}{2}}-\frac{1}{2} x^{\frac{3}{2}}-\frac{1}{8} x^{\frac{5}{2}}-\frac{1}{16} x^{\frac{7}{2}} \quad \& \mathrm{c}
$$

and thus

$$
z=\frac{2}{3} x^{\frac{3}{2}}-\frac{1}{5} x^{\frac{5}{2}}-\frac{1}{28} x^{\frac{7}{2}}-\frac{1}{72} x^{\frac{9}{2}} \quad \& c .
$$

[Here Newton writes $r=\sqrt{x-x^{2}}$ as $r=x^{\frac{1}{2}} \sqrt{1-x}$ and applies the binomial theorem $(*)$ to yield a series which he integrates term by term.]

Thus $r=\sqrt{a a+b x-x x}$ (the equation of a circle) gives by extraction of roots

$$
r=a+\frac{b x}{2 a}-\frac{x x}{2 a}-\frac{b b x x}{8 a^{3}} \quad \& c
$$

whence by Prop 2 we derive

$$
z=a x+\frac{b x x}{4 a}-\frac{x^{3}}{6 a}-\frac{b b x^{3}}{24 a^{3}} \& c .
$$

[Here Newton expands $r=\sqrt{a a+b x-x x}$ as $r=a \sqrt{1+\frac{b x-x x}{a a}}$ using $(*)$.]
And likewise $\sqrt{\frac{1+a x x}{1-b x x}}=r$, by the required reduction gives

$$
r=1+\begin{array}{ll}
+\frac{1}{2} b \\
+\frac{1}{2} a & x^{2}
\end{array} \begin{aligned}
& +\frac{3}{8} b b \\
& \\
& \\
& \\
& \\
& -\frac{1}{4} a b
\end{aligned} x^{4} \quad \& c .
$$

[Here Newton writes $\sqrt{\frac{1+a x x}{1-b x x}}$ as $(1+a x x)^{1 / 2}(1-b x x)^{-1 / 2}$ and multiplies the two binomial expansions.]

Whence by Prop 2 we obtain

$$
z=x+\begin{array}{ll}
+\frac{1}{6} b & +\frac{3}{40} b b \\
+\frac{1}{6} a & x^{3} \\
& +\frac{1}{20} a b x^{5} \\
& -\frac{1}{40} a a
\end{array}
$$

Likewise finally $r=\sqrt[3]{a^{3}+x^{3}}$ by extraction of the cube root gives

$$
r=a+\frac{x^{3}}{3 a a}-\frac{x^{6}}{9 a^{5}}+\frac{5 x^{9}}{81 a^{8}} \& c
$$

and thus

$$
z=a x+\frac{x^{4}}{12 a a}-\frac{x^{7}}{63 a^{5}}+\frac{x^{10}}{162 a^{8}} \quad \& \mathrm{c}=A F D B
$$

or also

$$
r=x+\frac{a^{3}}{3 x x}-\frac{a^{6}}{9 x^{5}}+\frac{5 a^{9}}{81 x^{8}} \& \mathrm{c}
$$

whence

$$
z=\frac{x x}{2}-\frac{a^{3}}{3 x}+\frac{a^{6}}{36 x^{4}}-\frac{5 a^{9}}{567 x^{7}} \quad \& \mathrm{c}=H D B H
$$

[Here Newton gives a second expansion useful when x is large. For example for $\int_{0}^{1 / 2} \sqrt[3]{1+x^{3}} d x$ the first four terms of his series give .50509035 while numerical integration on the TI-84 gives .50508999 . On the other hand for $\int_{100}^{101} \sqrt[3]{1+x^{3}} d x$ the first 3 terms of his second series give 100.500033 , the same approximation as the calculator.]
Anthony Phillips
September 2020

